Trigonometry	Name:
Study Guide 21	Class:
Due Date:	Score:

No Work \Leftrightarrow No Points

1. (4 points) Given P(-4,7) and Q(3,2), find and draw $u = \overrightarrow{PQ}$ then compute its magnitude.

(c) _____

3. (2 points) Given $u = \langle -5, 3 \rangle$ and $v = \langle 1, 5 \rangle$, find $u \bullet v$.

3. _____

4. (3 points) Given u = <4, -3> and v = <2, 7>, find the angle θ between them.

4. ____

5. (3 points) Given u = 2i + 6j and v = -6i + 2j, find the angle θ between them.

5. _____

6. (3 points) Given u = -3i + 5j and v = 4i + 2j, draw u, v and u + v.

- 10. Given u = < -2, 4 > and v = < 1, 1 >,
 - (a) (2 points) find the component of u along v.

(b) (2 points) find $u_1 = \mathbf{proj}_v u$	(a)
(c) (2 points) find $u_2 = u - \operatorname{proj}_v u$	(b)
11. Given $u = \langle -2, 9 \rangle$ and $v = \langle -1, 2 \rangle$,	(c)
(a) (2 points) find the component of u along v .	
(b) (2 points) find $u_1 = \mathbf{proj}_v u$	(a)
(c) (2 points) find $u_2 = u - \mathbf{proj}_v u$	(b)
(d) (2 points) verify that $u_1 + u_2 = u$	(c)
	(d)